A unified approach to zero duality gap for convex optimization problems

نویسندگان

چکیده

In this paper we establish necessary and sufficient condition for zero duality gap of the optimization problem involving general perturbation mapping via characteringsetunder convex setting. An application to class composite problems will also be given show that our results can applied various classes problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Continuous Convex Sets and Zero Duality Gap for Convex Programs

This article uses classical notions of convex analysis over euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of a convex set, or the inner aperture directions defined by Larman and Brøndsted for the same class of sets, to provide a new zero duality gap criterion for ordinary convex programs. On this ground, we are able to characterize objective functions and respectively feasib...

متن کامل

Zero Duality Gap for Convex Programs: a General Result

This article addresses a general criterion providing a zero duality gap for convex programs in the setting of the real locally convex spaces. The main theorem of our work is formulated only in terms of the constraints of the program, hence it holds true for any objective function fulfilling a very general qualification condition, implied for instance by standard qualification criteria of Moreau...

متن کامل

Duality for almost convex optimization problems via the perturbation approach

We deal with duality for almost convex finite dimensional optimization problems by means of the classical perturbation approach. To this aim some standard results from the convex analysis are extended to the case of almost convex sets and functions. The duality for some classes of primal-dual problems is derived as a special case of the general approach. The sufficient regularity conditions we ...

متن کامل

Conditions for zero duality gap in convex programming

We introduce and study a new dual condition which characterizes zero duality gap in nonsmooth convex optimization. We prove that our condition is weaker than all existing constraint qualifications, including the closed epigraph condition. Our dual condition was inspired by, and is weaker than, the so-called Bertsekas’ condition for monotropic programming problems. We give several corollaries of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: T?p chí Khoa h?c ??i h?c ??ng Tháp

سال: 2023

ISSN: ['0866-7675']

DOI: https://doi.org/10.52714/dthu.11.5.2022.975